03-P012 Cell traction force microscopy in cardiac morphogenesis
نویسندگان
چکیده
منابع مشابه
03-P012 Cell traction force microscopy in cardiac morphogenesis
microscopy. Quantitative analysis of the movies revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix (ECM) in parallel to the labelled cells and substracted the ECM movement to the global motion of cells. After substraction, cell movements remained consistently graded but lacked directionality. Th...
متن کاملTraction force microscopy of engineered cardiac tissues
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we i...
متن کامل3D Viscoelastic traction force microscopy.
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, whi...
متن کاملHigh-resolution traction force microscopy.
Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental...
متن کاملThe principles and biological applications of cell traction force microscopy
When a cell adheres to an underlying substrate, it exerts traction forces on the substrate to enable migration. The cell traction forces (CTFs) are also essential for controlling cell shape and maintaining cellular homeostasis. As such, CTF plays a vital role in many fundamental biological processes including morphogenesis, angiogenesis, metastasis, and tissue wound healing. Thus, a close exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanisms of Development
سال: 2009
ISSN: 0925-4773
DOI: 10.1016/j.mod.2009.06.065